This is a prerelease version.

Creating Custom Query Attributes

Custom attributes allow you to use the Predicates API to query fields, using complex calculations.

For example, imagine a map whose values are Person objects that contain a list of children in a children field.

class Person {
  String name;
  String[] children;
}

You may want to query for Person objects that have more than one child. But, you neither have a field with the total number of childen nor does the Predicates API have a count() method that you can call.

In this case, you can create a custom attribute called childrenCount that returns the number of children for each Person object.

Implementing a ValueExtractor

A custom attribute is a "synthetic" attribute that does not exist as a field or a getter in the object that it is extracted from. Thus, it is necessary to define the policy on how the attribute is supposed to be extracted.

In order to implement a ValueExtractor, implement the com.hazelcast.query.extractor.ValueExtractor interface and the extract() method. This method does not return any values since the extracted value is collected by the ValueCollector. In order to return multiple results from a single extraction, invoke the ValueCollector.collect() method multiple times, so that the collector collects all results.

See the ValueExtractor and ValueCollector Javadocs.

Custom attributes are compatible with all Hazelcast serialization methods.

ValueExtractor with Portable Serialization

Portable serialization is a special kind of serialization where there is no need to have the class of the serialized object on the classpath of a member in order to read its attributes. That is the reason why the target object passed to the ValueExtractor.extract() method is not of the exact type that has been stored. Instead, an instance of a com.hazelcast.query.extractor.ValueReader is passed. ValueReader enables reading the attributes of a Portable object in a generic and type-agnostic way. It contains two methods:

  • read(String path, ValueCollector<T> collector) - enables passing all results directly to the ValueCollector.

  • read(String path, ValueCallback<T> callback) - enables filtering, transforming and grouping the result of the read operation and manually passing it to the ValueCollector.

See the ValueReader Javadoc.

Returning Multiple Values from a Single Extraction

It sounds counter-intuitive, but a single extraction may return multiple values when arrays or collections are involved. Let’s have a look at the following data structure in pseudo-code:

class Motorbike {
    Wheel[] wheel;
}

class Wheel {
    String name;
}

Let’s assume that we want to extract the names of all wheels from a single motorbike object. Each motorbike has two wheels so there are two names for each bike. In order to return both values from the extraction operation, collect them separately using the ValueCollector. Collecting multiple values in this way allows you to operate on these multiple values as if they were single values during the evaluation of the predicates.

Let’s assume that we registered a custom extractor with the name wheelName and executed the following query: wheelName = front-wheel.

The extraction may return up to two wheel names for each Motorbike since each Motorbike has up to two wheels. In such a case, it is enough if a single value evaluates the predicate’s condition to true to return a match, so it returns a Motorbike if "any" of the wheels matches the expression.

Extraction Arguments

A ValueExtractor may use a custom argument if it is specified in the query. The custom argument may be passed within the square brackets located after the name of the custom attribute, e.g., customAttribute[argument].

Let’s have a look at the following query: currency[incoming] == EUR The currency is a custom attribute that uses a com.test.CurrencyExtractor for extraction.

The string incoming is an argument that is passed to the ArgumentParser during the extraction. The parser parses the string according to its custom logic and it returns a parsed object. The parsed object may be a single object, array, collection, or any arbitrary object. It is up to the ValueExtractor implementation to understand the semantics of the parsed argument object.

For now it is not possible to register a custom ArgumentParser, thus a default parser is used. It follows a pass-through semantic, which means that the string located in the square brackets is passed "as is" to the ValueExtractor.extract() method.

Please note that using square brackets within the argument string are not allowed.

Configuring a Custom Attribute Programmatically

The following snippet demonstrates how to define a custom attribute using a ValueExtractor.

AttributeConfig attributeConfig = new AttributeConfig();
attributeConfig.setName("currency");
attributeConfig.setExtractorClassName("com.bank.CurrencyExtractor");

MapConfig mapConfig = new MapConfig();
mapConfig.addAttributeConfig(attributeConfig);

currency is the name of the custom attribute that will be extracted using the CurrencyExtractor class.

Keep in mind that an extractor may not be added after the map has been instantiated. All extractors have to be defined upfront in the map’s initial configuration.

Configuring a Custom Attribute Declaratively

The following snippet demonstrates how to define a custom attribute in the Hazelcast XML Configuration.

  • XML

  • YAML

<hazelcast>
    ...
    <map name="trades">
        <attributes>
            <attribute extractor-class-name="com.bank.CurrencyExtractor">currency</attribute>
        </attributes>
    </map>
    ...
</hazelcast>
hazelcast:
  map:
    trades:
      attributes:
        currency:
          extractor-class-name: com.bank.CurrencyExtractor

Analogous to the example above, currency is the name of the custom attribute that will be extracted using the CurrencyExtractor class.

Please note that an attribute name may begin with an ASCII letter [A-Za-z] or digit [0-9] and may contain ASCII letters [A-Za-z], digits [0-9] or underscores later on.

Indexing Custom Attributes

You can create an index using a custom attribute.

The name of the attribute used in the index definition has to match the one used in the attributes configuration.

Defining indexes with extraction arguments is allowed, as shown in the example below:

  • XML

  • YAML

<hazelcast>
    ...
    <indexes>
        <!-- custom attribute without an extraction argument -->
        <index>
            <attributes>
                <attribute>currency</attribute>
            </attributes>
        </index>
        <!-- custom attribute using an extraction argument -->
        <index>
            <attributes>
                <attribute>currency[incoming]</attribute>
            </attributes>
        </index>
    </indexes>
    ...
</hazelcast>
hazelcast:
  ...
  indexes:
    attributes:
      - "currency"
      - "currency[incoming]"